Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.720
Filtrar
1.
Sci Rep ; 14(1): 8707, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622201

RESUMO

In this study, we explored spatial-temporal dependencies and their impact on the tactile perception of moving objects. Building on previous research linking visual perception and human movement, we examined if an imputed motion mechanism operates within the tactile modality. We focused on how biological coherence between space and time, characteristic of human movement, influences tactile perception. An experiment was designed wherein participants were stimulated on their right palm with tactile patterns, either ambiguous (incongruent conditions) or non-ambiguous (congruent conditions) relative to a biological motion law (two-thirds power law) and asked to report perceived shape and associated confidence. Our findings reveal that introducing ambiguous tactile patterns (1) significantly diminishes tactile discrimination performance, implying motor features of shape recognition in vision are also observed in the tactile modality, and (2) undermines participants' response confidence, uncovering the accessibility degree of information determining the tactile percept's conscious representation. Analysis based on the Hierarchical Drift Diffusion Model unveiled the sensitivity of the evidence accumulation process to the stimulus's informational ambiguity and provides insight into tactile perception as predictive dynamics for reducing uncertainty. These discoveries deepen our understanding of tactile perception mechanisms and underscore the criticality of predictions in sensory information processing.


Assuntos
Percepção de Movimento , Percepção do Tato , Humanos , Tato/fisiologia , Percepção do Tato/fisiologia , Percepção Visual , Mãos/fisiologia , Movimento/fisiologia , Percepção de Movimento/fisiologia
2.
J Exp Psychol Gen ; 153(4): 1038-1052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587934

RESUMO

We often assume that travel direction is redundant with head direction, but from first principles, these two factors provide differing spatial information. Although head direction has been found to be a fundamental component of human navigation, it is unclear how self-motion signals for travel direction contribute to forming a travel trajectory. Employing a novel motion adaptation paradigm from visual neuroscience designed to preclude a contribution of head direction, we found high-level aftereffects of perceived travel direction, indicating that travel direction is a fundamental component of human navigation. Interestingly, we discovered a higher frequency of reporting perceived travel toward the adapted direction compared to a no-adapt control-an aftereffect that runs contrary to low-level motion aftereffects. This travel aftereffect was maintained after controlling for possible response biases and approaching effects, and it scaled with adaptation duration. These findings demonstrate the first evidence of how a pure travel direction signal might be represented in humans, independent of head direction. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Pós-Efeito de Figura , Percepção de Movimento , Humanos , Movimento (Física) , Percepção de Movimento/fisiologia
3.
Vision Res ; 218: 108380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479050

RESUMO

Biological motion perception plays a critical role in various decisions in daily life. Failure to decide accordingly in such a perceptual task could have life-threatening consequences. Neurophysiology and computational modeling studies suggest two processes mediating perceptual decision-making. One of these signals is associated with the accumulation of sensory evidence and the other with response selection. Recent EEG studies with humans have introduced an event-related potential called Centroparietal Positive Potential (CPP) as a neural marker aligned with the sensory evidence accumulation while effectively distinguishing it from motor-related lateralized readiness potential (LRP). The present study aims to investigate the neural mechanisms of biological motion perception in the framework of perceptual decision-making, which has been overlooked before. More specifically, we examine whether CPP would track the coherence of the biological motion stimuli and could be distinguished from the LRP signal. We recorded EEG from human participants while they performed a direction discrimination task of a point-light walker stimulus embedded in various levels of noise. Our behavioral findings revealed shorter reaction times and reduced miss rates as the coherence of the stimuli increased. In addition, CPP tracked the coherence of the biological motion stimuli with a tendency to reach a common level during the response, albeit with a later onset than the previously reported results in random-dot motion paradigms. Furthermore, CPP was distinguished from the LRP signal based on its temporal profile. Overall, our results suggest that the mechanisms underlying perceptual decision-making generalize to more complex and socially significant stimuli like biological motion.


Assuntos
Percepção de Movimento , Humanos , Percepção de Movimento/fisiologia , Potenciais Evocados , Tempo de Reação/fisiologia , Tomada de Decisões/fisiologia , Variação Contingente Negativa
4.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465936

RESUMO

The standard visual acuity measurements rely on stationary stimuli, either letters (Snellen charts), vertical lines (vernier acuity) or grating charts, processed by those regions of the visual system most sensitive to the stationary stimulation, receiving visual input from the central part of the visual field. Here, an acuity measurement is proposed based on discrimination of simple shapes, that are defined by motion of the dots in the random dot kinematograms (RDK) processed by visual regions sensitive to motion stimulation and receiving input also from the peripheral visual field. In the motion-acuity test, participants are asked to distinguish between a circle and an ellipse, with matching surfaces, built from RDKs, and separated from the background RDK either by coherence, direction, or velocity of dots. The acuity measurement is based on ellipse detection, which with every correct response becomes more circular until reaching the acuity threshold. The motion-acuity test can be presented in negative contrast (black dots on white background) or in positive contrast (white dots on black background). The motion defined shapes are located centrally within 8 visual degrees and are surrounded by RDK background. To test the influence of visual peripheries on centrally measured acuity, a mechanical narrowing of the visual field to 10 degrees is proposed, using opaque goggles with centrally located holes. This easy and replicable narrowing system is suitable for MRI protocols, allowing further investigations of the functions of the peripheral visual input. Here, a simple measurement of shape and motion perception simultaneously is proposed. This straightforward test assesses vision impairments depending on the central and peripheral visual field inputs. The proposed motion-acuity test advances the capability of standard tests to reveal spare or even strengthened vision functions in patients with injured visual system, that until now remained undetected.


Assuntos
Percepção de Movimento , Campos Visuais , Humanos , Limiar Sensorial/fisiologia , Acuidade Visual , Percepção de Movimento/fisiologia , Psicofísica
5.
Cognition ; 246: 105768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479091

RESUMO

The independent effects of short- and long-term experiences on visual perception have been discussed for decades. However, no study has investigated whether and how these experiences simultaneously affect our visual perception. To address this question, we asked participants to estimate their self-motion directions (i.e., headings) simulated from optic flow, in which a long-term experience learned in everyday life (i.e., straight-forward motion being more common than lateral motion) plays an important role. The headings were selected from three distributions that resembled a peak, a hill, and a flat line, creating different short-term experiences. Importantly, the proportions of headings deviating from the straight-forward motion gradually increased in the peak, hill, and flat distributions, leading to a greater conflict between long- and short-term experiences. The results showed that participants biased their heading estimates towards the straight-ahead direction and previously seen headings, which increased with the growing experience conflict. This suggests that both long- and short-term experiences simultaneously affect visual perception. Finally, we developed two Bayesian models (Model 1 vs. Model 2) based on two assumptions that the experience conflict altered the likelihood distribution of sensory representation or the motor response system. The results showed that both models accurately predicted participants' estimation biases. However, Model 1 predicted a higher variance of serial dependence compared to Model 2, while Model 2 predicted a higher variance of the bias towards the straight-ahead direction compared to Model 1. This suggests that the experience conflict can influence visual perception by affecting both sensory and motor response systems. Taken together, the current study systematically revealed the effects of long- and short-term experiences on visual perception and the underlying Bayesian processing mechanisms.


Assuntos
Percepção de Movimento , Fluxo Óptico , Humanos , Percepção de Movimento/fisiologia , Teorema de Bayes , Percepção Visual/fisiologia , Aprendizagem
6.
Brain Struct Funct ; 229(4): 937-946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492041

RESUMO

KEY MESSAGE: The Riddoch syndrome is thought to be caused by damage to the primary visual cortex (V1), usually following a vascular event. This study shows that damage to the anatomical input to V1, i.e., the optic radiations, can result in selective visual deficits that mimic the Riddoch syndrome. The results also highlight the differential susceptibility of the magnocellular and parvocellular visual systems to injury. Overall, this study offers new insights that will improve our understanding of the impact of brain injury and neurosurgery on the visual pathways. The Riddoch syndrome, characterised by the ability to perceive, consciously, moving visual stimuli but not static ones, has been associated with lesions of primary visual cortex (V1). We present here the case of patient YL who, after a tumour resection surgery that spared his V1, nevertheless showed symptoms of the Riddoch syndrome. Based on our testing, we postulated that the magnocellular (M) and parvocellular (P) inputs to his V1 may be differentially affected. In a first experiment, YL was presented with static and moving checkerboards in his blind field while undergoing multimodal magnetic resonance imaging (MRI), including structural, functional, and diffusion, acquired at 3 T. In a second experiment, we assessed YL's neural responses to M and P visual stimuli using psychophysics and high-resolution fMRI acquired at 7 T. YL's optic radiations were partially damaged but not severed. We found extensive activity in his visual cortex for moving, but not static, visual stimuli, while our psychophysical tests revealed that only low-spatial frequency moving checkerboards were perceived. High-resolution fMRI revealed strong responses in YL's V1 to M stimuli and very weak ones to P stimuli, indicating a functional P lesion affecting V1. In addition, YL frequently reported seeing moving stimuli and discriminating their direction of motion in the absence of visual stimulation, suggesting that he was experiencing visual hallucinations. Overall, this study highlights the possibility of a selective loss of P inputs to V1 resulting in the Riddoch syndrome and in hallucinations of visual motion.


Assuntos
Percepção de Movimento , Córtex Visual , Masculino , Humanos , Percepção de Movimento/fisiologia , Visão Ocular , Córtex Visual/fisiologia , Imageamento por Ressonância Magnética , Vias Visuais/fisiologia , Alucinações , Estimulação Luminosa/métodos
7.
Neuroimage Clin ; 41: 103570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309185

RESUMO

Impaired motion perception in schizophrenia has been associated with deficits in social-cognitive processes and with reduced activation of visual sensory regions, including the middle temporal area (MT+) and posterior superior temporal sulcus (pSTS). These findings are consistent with the recent proposal of the existence of a specific 'third visual pathway' specialized for social perception in which motion is a fundamental component. The third visual pathway transmits visual information from early sensory visual processing areas to the STS, with MT+ acting as a critical intermediary. We used functional magnetic resonance imaging to investigate functioning of this pathway during processing of naturalistic videos with explicit (real) motion and static images with implied motion cues. These measures were related to face emotion recognition and motion-perception, as measured behaviorally. Participants were 28 individuals with schizophrenia (Sz) and 20 neurotypical controls. Compared to controls, individuals with Sz showed reduced activation of third visual pathway regions (MT+, pSTS) in response to both real- and implied-motion stimuli. Dysfunction of early visual cortex and pulvinar were also associated with aberrant real-motion processing. Implied-motion stimuli additionally engaged a wide network of brain areas including parietal, motor and frontal nodes of the human mirror neuron system. The findings support concepts of MT+ as a mediator between visual sensory areas and higher-order brain and argue for greater focus on MT+ contributions to social-cognitive processing, in addition to its well-documented role in visual motion processing.


Assuntos
Percepção de Movimento , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Lobo Temporal , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos
8.
J Neurosci ; 44(15)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38413231

RESUMO

Fluctuations in brain activity alter how we perceive our body and generate movements but have not been investigated in functional whole-body behaviors. During reactive balance, we recently showed that evoked brain activity is associated with the balance ability in young individuals. Furthermore, in PD, impaired whole-body motion perception in reactive balance is associated with impaired balance. Here, we investigated the brain activity during the whole-body motion perception in reactive balance in young adults (9 female, 10 male). We hypothesized that both ongoing and evoked cortical activity influences the efficiency of information processing for successful perception and movement during whole-body behaviors. We characterized two cortical signals using electroencephalography localized to the SMA: (1) the "N1," a perturbation-evoked potential that decreases in amplitude with expectancy and is larger in individuals with lower balance function, and (2) preperturbation ß power, a transient rhythm that favors maintenance of the current sensorimotor state and is inversely associated with tactile perception. In a two-alternative forced choice task, participants judged whether pairs of backward support surface perturbations during standing were in the "same" or "different" direction. As expected, lower whole-body perception was associated with lower balance ability. Within a perturbation pair, N1 attenuation was larger on correctly perceived trials and associated with better balance, but not perception. In contrast, preperturbation ß power was higher on incorrectly perceived trials and associated with poorer perception, but not balance. Together, ongoing and evoked cortical activity have unique roles in information processing that give rise to distinct associations with perceptual and balance ability.


Assuntos
Percepção de Movimento , Equilíbrio Postural , Adulto Jovem , Humanos , Masculino , Feminino , Equilíbrio Postural/fisiologia , Eletroencefalografia , Potenciais Evocados/fisiologia , Movimento , Percepção de Movimento/fisiologia
9.
PLoS One ; 19(2): e0297963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38381707

RESUMO

This study explores the visual phenomenon of random dot structure-from-motion (SFM), where the brain perceives 3D shapes from the coordinated 2D motion of dots. Observing SFM may lead to ambiguous depth relations that reverse back and forth during prolonged viewing. I demonstrate that different processes are involved in triggering perceived reversals for identical SFM shapes involved in spinning and wobbling motion. Durations of stable percepts were measured while human participants viewed the two SFM stimuli, and also a static Necker figure, and a wobbling Necker figure for two sets of 2.5 minutes each. The results showed that wobbling SFM resulted in much longer stable durations compared to the other stimuli. The durations for the wobbling SFM stimuli was not correlated with the spinning SFM, or the two Necker stimuli. Yet, such correlations were obtained between the other stimuli. It is known that reversals obtained while viewing spinning SFM stimuli involves bottom-up driven adaptation and recovery cycles between neural populations. This result suggests that wobbling SFM efficiently deactivates this process and targets other contributions to the reversals, such as top-down processes. In addition, biases observed in the first set disappeared in the second set implying influences of learning between the sets. Imagery vividness, which measures intrinsic top-down processes, was also scored but no correlation between scores in visual imagery and reversal rates were obtained. This research provides insight into the complex interplay between bottom-up driven adaptation-recovery cycles, and top-down processes in ambiguous perception.


Assuntos
Percepção de Movimento , Humanos , Movimento (Física) , Percepção de Movimento/fisiologia , Encéfalo , Aprendizagem , Cabeça , Estimulação Luminosa/métodos
10.
J Vis ; 24(2): 3, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306112

RESUMO

Why do moving objects appear rigid when projected retinal images are deformed non-rigidly? We used rotating rigid objects that can appear rigid or non-rigid to test whether shape features contribute to rigidity perception. When two circular rings were rigidly linked at an angle and jointly rotated at moderate speeds, observers reported that the rings wobbled and were not linked rigidly, but rigid rotation was reported at slow speeds. When gaps, paint, or vertices were added, the rings appeared rigidly rotating even at moderate speeds. At high speeds, all configurations appeared non-rigid. Salient features thus contribute to rigidity at slow and moderate speeds but not at high speeds. Simulated responses of arrays of motion-energy cells showed that motion flow vectors are predominantly orthogonal to the contours of the rings, not parallel to the rotation direction. A convolutional neural network trained to distinguish flow patterns for wobbling versus rotation gave a high probability of wobbling for the motion-energy flows. However, the convolutional neural network gave high probabilities of rotation for motion flows generated by tracking features with arrays of MT pattern-motion cells and corner detectors. In addition, circular rings can appear to spin and roll despite the absence of any sensory evidence, and this illusion is prevented by vertices, gaps, and painted segments, showing the effects of rotational symmetry and shape. Combining convolutional neural network outputs that give greater weight to motion energy at fast speeds and to feature tracking at slow speeds, with the shape-based priors for wobbling and rolling, explained rigid and non-rigid percepts across shapes and speeds (R2 = 0.95). The results demonstrate how cooperation and competition between different neuronal classes lead to specific states of visual perception and to transitions between the states.


Assuntos
Ilusões , Percepção de Movimento , Humanos , Percepção de Movimento/fisiologia , Rotação , Percepção Visual , Reconhecimento Visual de Modelos
11.
J Exp Psychol Hum Percept Perform ; 50(5): 451-463, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421793

RESUMO

A wealth of converging research lines has led support to the notion that specialized neural processes output a priori information about the expected effects of gravity to fine-tune motor and perceptual responses to dynamic events. Arguably, these putative internal models of gravity might modulate the efficiency in visual search for objects conforming or not to gravitationally coherent dynamics. In the present work, we explored this possibility with a visual search task involving arrays of two to eight objects moving periodically back and forth. The target could be an accelerating/decelerating ball (as if bouncing on earth's surface-1g) with distractors moving at a constant speed (0g) or the reverse. Moreover, the direction of the gravitational pull, as implied by the 1g motion patterns, could be aligned or misaligned with Earth's gravity. Overall, searches for 1g targets were more efficient than 0g targets except, notably, when stimuli displays were congruent with Earth's gravitational pull, in which case the visual search asymmetry is significantly reduced. Outcomes are interpreted as reflecting the joint and mutually cancelling contribution of low-level detection of acceleration patterns and higher level detection of unexpected violations of gravitational motion. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Percepção de Movimento , Humanos , Percepção de Movimento/fisiologia , Gravitação , Estimulação Luminosa
12.
Exp Brain Res ; 242(3): 685-725, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253934

RESUMO

Users of automated vehicles will engage in other activities and take their eyes off the road, making them prone to motion sickness. To resolve this, the current paper validates models predicting sickness in response to motion and visual conditions. We validate published models of vestibular and visual sensory integration that have been used for predicting motion sickness through sensory conflict. We use naturalistic driving data and laboratory motion (and vection) paradigms, such as sinusoidal translation and rotation at different frequencies, Earth-Vertical Axis Rotation, Off-Vertical Axis Rotation, Centrifugation, Somatogravic Illusion, and Pseudo-Coriolis, to evaluate different models for both motion perception and motion sickness. We investigate the effects of visual motion perception in terms of rotational velocity (visual flow) and verticality. According to our findings, the SVCI model, a 6DOF model based on the Subjective Vertical Conflict (SVC) theory, with visual rotational velocity input is effective at estimating motion sickness. However, it does not correctly replicate motion perception in paradigms such as roll-tilt perception during centrifuge, pitch perception during somatogravic illusion, and pitch perception during pseudo-Coriolis motions. On the other hand, the Multi-Sensory Observer Model (MSOM) accurately models motion perception in all considered paradigms, but does not effectively capture the frequency sensitivity of motion sickness, and the effects of vision on sickness. For both models (SVCI and MSOM), the visual perception of rotational velocity strongly affects sickness and perception. Visual verticality perception does not (yet) contribute to sickness prediction, and contributes to perception prediction only for the somatogravic illusion. In conclusion, the SVCI model with visual rotation velocity feedback is the current preferred option to design vehicle control algorithms for motion sickness reduction, while the MSOM best predicts perception. A unified model that jointly captures perception and motion sickness remains to be developed.


Assuntos
Ilusões , Percepção de Movimento , Enjoo devido ao Movimento , Humanos , Percepção de Movimento/fisiologia , Percepção Espacial/fisiologia , Rotação
13.
Sci Rep ; 14(1): 1109, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212348

RESUMO

Visuomotor performance acting on a moving target is fundamentally based on visual motion discriminability, and its neural basis is presumed to be human MT (hMT+), a motion vision center of the dorsal visual pathway. In this study, we investigated whether and how the accuracy and speed of motion discrimination are affected by applying transcranial static magnetic field stimulation (tSMS) to hMT+, which reduces cortical excitability. Sixteen participants performed a motion direction discrimination (MDD) task using a random dot kinematogram before (Pre-test) and during (During-test) application of the tSMS over left hMT+. The correct rate of the MDD task was significantly lower in the During-test compared to the Pre-test, an effect not seen with the sham condition. The inhibition effects were observed only for the right visual field corresponding to hMT+ in the stimulated hemisphere. On the other hand, no modulatory effect of tSMS was observed in the reaction time. We, therefore, demonstrated the inhibitory effect of tSMS on the left hMT+ impairs the accuracy but not the speed of motion information processing in the contralateral visual field.


Assuntos
Percepção de Movimento , Estimulação Magnética Transcraniana , Humanos , Percepção de Movimento/fisiologia , Movimento (Física) , Tempo de Reação , Campos Magnéticos , Estimulação Luminosa
14.
Hum Brain Mapp ; 45(1): e26571, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224544

RESUMO

The ability to detect and assess world-relative object-motion is a critical computation performed by the visual system. This computation, however, is greatly complicated by the observer's movements, which generate a global pattern of motion on the observer's retina. How the visual system implements this computation is poorly understood. Since we are potentially able to detect a moving object if its motion differs in velocity (or direction) from the expected optic flow generated by our own motion, here we manipulated the relative motion velocity between the observer and the object within a stationary scene as a strategy to test how the brain accomplishes object-motion detection. Specifically, we tested the neural sensitivity of brain regions that are known to respond to egomotion-compatible visual motion (i.e., egomotion areas: cingulate sulcus visual area, posterior cingulate sulcus area, posterior insular cortex [PIC], V6+, V3A, IPSmot/VIP, and MT+) to a combination of different velocities of visually induced translational self- and object-motion within a virtual scene while participants were instructed to detect object-motion. To this aim, we combined individual surface-based brain mapping, task-evoked activity by functional magnetic resonance imaging, and parametric and representational similarity analyses. We found that all the egomotion regions (except area PIC) responded to all the possible combinations of self- and object-motion and were modulated by the self-motion velocity. Interestingly, we found that, among all the egomotion areas, only MT+, V6+, and V3A were further modulated by object-motion velocities, hence reflecting their possible role in discriminating between distinct velocities of self- and object-motion. We suggest that these egomotion regions may be involved in the complex computation required for detecting scene-relative object-motion during self-motion.


Assuntos
Percepção de Movimento , Neocórtex , Humanos , Percepção de Movimento/fisiologia , Mapeamento Encefálico , Movimento (Física) , Giro do Cíngulo , Estimulação Luminosa/métodos
15.
PLoS Biol ; 22(1): e3002375, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38236815

RESUMO

Detecting imminent collisions is essential for survival. Here, we used high-resolution fMRI at 7 Tesla to investigate the role of attention and consciousness for detecting collision trajectory in human subcortical pathways. Healthy participants can precisely discriminate collision from near-miss trajectory of an approaching object, with pupil size change reflecting collision sensitivity. Subcortical pathways from the superior colliculus (SC) to the ventromedial pulvinar (vmPul) and ventral tegmental area (VTA) exhibited collision-sensitive responses even when participants were not paying attention to the looming stimuli. For hemianopic patients with unilateral lesions of the geniculostriate pathway, the ipsilesional SC and VTA showed significant activation to collision stimuli in their scotoma. Furthermore, stronger SC responses predicted better behavioral performance in collision detection even in the absence of awareness. Therefore, human tectofugal pathways could automatically detect collision trajectories without the observers' attention to and awareness of looming stimuli, supporting "blindsight" detection of impending visual threats.


Assuntos
Percepção de Movimento , Pulvinar , Humanos , Percepção de Movimento/fisiologia , Colículos Superiores/fisiologia , Imageamento por Ressonância Magnética , Pulvinar/diagnóstico por imagem , Estimulação Luminosa , Vias Visuais/fisiologia
16.
Atten Percept Psychophys ; 86(2): 579-586, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37258891

RESUMO

The ability to readily detect and recognize biological motion (BM) is fundamental to survival and interpersonal communication. However, perception of BM is strongly disrupted when it is shown upside down. This well-known inversion effect is proposed to be caused by a life motion detection mechanism highly tuned to gravity-compatible motion cues. In the current study, we assessed the inversion effect in BM perception using a no-report pupillometry. We found that the pupil size was significantly enlarged when observers viewed upright BMs (gravity-compatible) compared with the inverted counterparts (gravity-incompatible). Importantly, such an effect critically depended on the dynamic biological characteristics, and could be extended to local feet motion signals. These findings demonstrate that the eye pupil can signal gravity-dependent life motion perception. More importantly, with the convenience, objectivity, and noninvasiveness of pupillometry, the current study paves the way for the potential application of pupillary responses in detecting the deficiency of life motion perception in individuals with socio-cognitive disorders.


Assuntos
Percepção de Movimento , Humanos , Percepção de Movimento/fisiologia , Pupila/fisiologia , Sinais (Psicologia) , Comunicação , Sensação Gravitacional
17.
Hear Res ; 441: 108922, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043403

RESUMO

The purpose of our study was to estimate the time interval required for integrating the acoustical changes related to sound motion using both psychophysical and EEG measures. Healthy listeners performed direction identification tasks under dichotic conditions in the delayed-motion paradigm. Minimal audible movement angle (MAMA) has been measured over the range of velocities from 60 to 360 deg/s. We also measured minimal duration of motion, at which the listeners could identify its direction. EEG was recorded in the same group of subjects during passive listening. Motion onset responses (MOR) were analyzed. MAMA increased linearly with motion velocity. Minimum audible angle (MAA) calculated from this linear function was about 2 deg. For higher velocities of the delayed motion, we found 2- to 3-fold better spatial resolution than the one previously reported for motion starting at the sound onset. The time required for optimal discrimination of motion direction was about 34 ms. The main finding of our study was that both direction identification time obtained in the behavioral task and cN1 latency behaved like hyperbolic functions of the sound's velocity. Direction identification time decreased asymptotically to 8 ms, which was considered minimal integration time for the instantaneous shift detection. Peak latency of cN1 also decreased with increasing velocity and asymptotically approached 137 ms. This limit corresponded to the latency of response to the instantaneous sound shift and was 37 ms later than the latency of the sound-onset response. The direction discrimination time (34 ms) was of the same magnitude as the additional time required for motion processing to be reflected in the MOR potential. Thus, MOR latency can be viewed as a neurophysiological index of temporal integration. Based on the findings obtained, we may assume that no measurable MOR would be evoked by slowly moving stimuli as they would reach their MAMAs in a time longer than the optimal integration time.


Assuntos
Percepção de Movimento , Localização de Som , Humanos , Localização de Som/fisiologia , Som , Tempo de Reação/fisiologia , Movimento (Física) , Movimento , Percepção de Movimento/fisiologia
18.
J Exp Biol ; 227(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38054359

RESUMO

Motion and camouflage were previously considered to be mutually exclusive, as sudden movements can be easily detected. Background matching, for instance, is a well-known, effective camouflage strategy where the colour and pattern of a stationary animal match its surrounding background. However, background matching may lose its efficacy when the animal moves, as the boundaries of the animal become more defined against its background. Recent evidence shows otherwise, as camouflaged objects can be less detectable than uncamouflaged objects even while in motion. Here, we explored whether the detectability of computer-generated stimuli varies with the speed of motion, background (matching and unmatching) and size of stimuli in six species of jumping spiders (Araneae: Salticidae). Our results showed that, in general, the responsiveness of all six salticid species tested decreased with increasing stimulus speed regardless of whether the stimuli were conspicuous or camouflaged. Importantly, salticid responses to camouflaged stimuli were significantly lower compared with those to conspicuous stimuli. There were significant differences in motion detectability across species when the stimuli were conspicuous, suggesting differences in visual acuity in closely related species of jumping spiders. Furthermore, small stimuli elicited significantly lower responses than large stimuli across species and speeds. Our results thus suggest that background matching is effective even when stimuli are in motion, reducing the detectability of moving stimuli.


Assuntos
Percepção de Movimento , Aranhas , Animais , Percepção de Movimento/fisiologia , Movimento , Movimento (Física) , Acuidade Visual , Aranhas/fisiologia
19.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37940561

RESUMO

Extracting common patterns of neural circuit computations in the autism spectrum and confirming them as a cause of specific core traits of autism is the first step toward identifying cell-level and circuit-level targets for effective clinical intervention. Studies in humans with autism have identified functional links and common anatomic substrates between core restricted behavioral repertoire, cognitive rigidity, and overstability of visual percepts during visual rivalry. To study these processes with single-cell precision and comprehensive neuronal population coverage, we developed the visual bistable perception paradigm for mice based on ambiguous moving plaid patterns consisting of two transparent gratings drifting at an angle of 120°. This results in spontaneous reversals of the perception between local component motion (plaid perceived as two separate moving grating components) and integrated global pattern motion (plaid perceived as a fused moving texture). This robust paradigm does not depend on the explicit report of the mouse, since the direction of the optokinetic nystagmus (OKN) is used to infer the dominant percept. Using this paradigm, we found that the rate of perceptual reversals between global and local motion interpretations is reduced in the methyl-CpG-binding protein 2 duplication syndrome (MECP2-ds) mouse model of autism. Moreover, the stability of local motion percepts is greatly increased in MECP2-ds mice at the expense of global motion percepts. Thus, our model reproduces a subclass of the core features in human autism (reduced rate of visual rivalry and atypical perception of visual motion). This further offers a well-controlled approach for dissecting neuronal circuits underlying these core features.


Assuntos
Transtorno Autístico , Retardo Mental Ligado ao Cromossomo X , Percepção de Movimento , Animais , Humanos , Camundongos , Transtorno Autístico/genética , Movimentos Oculares , Percepção de Movimento/fisiologia , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
20.
J Neurophysiol ; 131(2): 394-416, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38149327

RESUMO

Smooth pursuit eye movements respond on the basis of both immediate and anticipated target motion, where anticipations may be derived from either memory or perceptual cues. To study the combined influence of both immediate sensory motion and anticipation, subjects pursued clear or noisy random dot kinematograms (RDKs) whose mean directions were chosen from Gaussian distributions with SDs = 10° (narrow prior) or 45° (wide prior). Pursuit directions were consistent with Bayesian theory in that transitions over time from dependence on the prior to near total dependence on immediate sensory motion (likelihood) took longer with the noisier RDKs and with the narrower, more reliable, prior. Results were fit to Bayesian models in which parameters representing the variability of the likelihood either were or were not constrained to be the same for both priors. The unconstrained model provided a statistically better fit, with the influence of the prior in the constrained model smaller than predicted from strict reliability-based weighting of prior and likelihood. Factors that may have contributed to this outcome include prior variability different from nominal values, low-level sensorimotor learning with the narrow prior, or departures of pursuit from strict adherence to reliability-based weighting. Although modifications of, or alternatives to, the normative Bayesian model will be required, these results, along with previous studies, suggest that Bayesian approaches are a promising framework to understand how pursuit combines immediate sensory motion, past history, and informative perceptual cues to accurately track the target motion that is most likely to occur in the immediate future.NEW & NOTEWORTHY Smooth pursuit eye movements respond on the basis of anticipated, as well as immediate, target motions. Bayesian models using reliability-based weighting of previous (prior) and immediate target motions (likelihood) accounted for many, but not all, aspects of pursuit of clear and noisy random dot kinematograms with different levels of predictability. Bayesian approaches may solve the long-standing problem of how pursuit combines immediate sensory motion and anticipation of future motion to configure an effective response.


Assuntos
Percepção de Movimento , Acompanhamento Ocular Uniforme , Humanos , Teorema de Bayes , Reprodutibilidade dos Testes , Percepção de Movimento/fisiologia , Sinais (Psicologia) , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...